RK3576 SOM Carrier Board – Customizable OEM/ODM for AI, IoT, and Edge Applications
Home >> Solution >> SOM and Carrier Board

RK3576 SOM Carrier Board – Customizable OEM/ODM for AI, IoT, and Edge Applications

RK3576, 4 x Cortex-A72 + 4 x Cortex-A53 2.3GHz, 8nm
GPU ARM Mali-G52 MC3
OpenGL ES3.2/OpenCL 2.0/Vulkan1.1
6.0TOPS NPU, INT4,INT8,INT16, float16, Bfloat 16 and tf32 operation
Supports deep learning framework:TensorFlow, Caffe, Tflite, Pytorch, Onnx NN,Android NN, etc.

GM3576S

RK3576, 4 x Cortex-A72 + 4 x Cortex-A53 2.3GHz, 8nm
GPU ARM Mali-G52 MC3
OpenGL ES3.2/OpenCL 2.0/Vulkan1.1
6.0TOPS NPU, INT4,INT8,INT16, float16, Bfloat 16 and tf32 operation
Supports deep learning framework:TensorFlow, Caffe, Tflite, Pytorch, Onnx NN,Android NN, etc.
GM3576S

PRODUCT DETAIL

GM3576S
  • RK3576 SOM Carrier Board – Customizable OEM/ODM for AI, IoT, and Edge Applications RK3576, 4 x Cortex-A72 + 4 x Cortex-A53 2.3GHz, 8nm<br>GPU ARM Mali-G52 MC3<br>OpenGL ES3.2/OpenCL 2.0/Vulkan1.1<br>6.0TOPS NPU, INT4,INT8,INT16, float16, Bfloat 16 and tf32 operation<br>Supports deep learning framework:TensorFlow, Caffe, Tflite, Pytorch, Onnx NN,Android NN, etc.
    SOC
    RK3576, 4 x Cortex-A72 + 4 x Cortex-A53 2.3GHz, 8nm
    GPU ARM Mali-G52 MC3
    OpenGL ES3.2/OpenCL 2.0/Vulkan1.1
    6.0TOPS NPU, INT4,INT8,INT16, float16, Bfloat 16 and tf32 operation
    Supports deep learning framework:TensorFlow, Caffe, Tflite, Pytorch, Onnx NN,Android NN, etc.
  • RK3576 SOM Carrier Board – Customizable OEM/ODM for AI, IoT, and Edge Applications WIFI6 802.11a/b/g/n/ac/ax,<br>Bluetooth5.2
    Connectivity
    WIFI6 802.11a/b/g/n/ac/ax,
    Bluetooth5.2
  • RK3576 SOM Carrier Board – Customizable OEM/ODM for AI, IoT, and Edge Applications 2 x UART, one for debug (4Pin-PH1.25)<br>2 x Speaker Interface, 10W (2Pin-PH1.25)<br>2 x Mic connector (2Pin-PH1.25)<br>1 x Key connector (4Pin-PH1.25)<br>1 x TP-CoF/NFC connector (10Pin-FPC-0.5mm)<br>1 x RTC Battery connector (2Pin-PH1.25)<br>1 x mipi-camera (30Pin-FPC-0.5mm)
    Interface
    2 x UART, one for debug (4Pin-PH1.25)
    2 x Speaker Interface, 10W (2Pin-PH1.25)
    2 x Mic connector (2Pin-PH1.25)
    1 x Key connector (4Pin-PH1.25)
    1 x TP-CoF/NFC connector (10Pin-FPC-0.5mm)
    1 x RTC Battery connector (2Pin-PH1.25)
    1 x mipi-camera (30Pin-FPC-0.5mm)

Specification

  • OS
    Android14
  • SOC
    RK3576, 4 x Cortex-A72 + 4 x Cortex-A53 2.3GHz, 8nm
    GPU ARM Mali-G52 MC3
    OpenGL ES3.2/OpenCL 2.0/Vulkan1.1
    6.0TOPS NPU, INT4,INT8,INT16, float16, Bfloat 16 and tf32 operation
    Supports deep learning framework:TensorFlow, Caffe, Tflite, Pytorch, Onnx NN,Android NN, etc.
  • RAM
    LPDDR4 4G/8G/16G
  • ROM
    EMMC5.1 64G/128G/256G
  • Media
    Decode:
    4K@60fps H.264/AVC
    8K@30fps or 4K@120fps H.265/HEVC/VP9/AVS2/AV1
    1080@60fps H264/MVC

    Encoded:
    Dual video encoders which support H.265 and H.264
    H.264 and H.265 up to 4K@60fps
    Supports multi-stream encoding
  • Display
    1 x eDP1.3 Combo TX, up to 4K@120Hz
    1 x dual-LVDS up to 1920x1080@60hz
    1 x DisplayPort 1.4@ 4K60/USB3.2 gen1x1 Combo TX
    1 x HDMI-IN,1920x1080@60hz
  • Ethernet
    1000M Ethernet x 1
  • Connectivity
    WIFI6 802.11a/b/g/n/ac/ax,Bluetooth5.2
  • USB
    1 x Type-C,USB3.2 gen1,with OTG & DP-out(30Pin-FPC-0.5mm)
    3 x USB Host 2.0(3 x 4Pin-PH1.25)
  • Micro SD Card
    NA
  • Audio
    Speaker x 2
    Microphone x 2
  • Interface
    2 x UART, one for debug (4Pin-PH1.25)
    2 x Speaker Interface, 10W (2Pin-PH1.25)
    2 x Mic connector (2Pin-PH1.25)
    1 x Key connector (4Pin-PH1.25)
    1 x TP-CoF/NFC connector (10Pin-FPC-0.5mm)
    1 x RTC Battery connector (2Pin-PH1.25)
    1 x mipi-camera (30Pin-FPC-0.5mm)
  • Input Power
    12V@2A
  • PCB
    Size: 75 x 110 x 1.6mm
    Process: SoM + carried Board
  • Environment
    Operating temperature -20°C ~ 60°C

Inquriy

Interested in learning more?
See all of our smart devices solution for every industry